大數據投資股份有限公司
  • 首頁
  • 關於大數據
    回主選單
    • 企業簡介
    • 公司淨值比較圖
    • 里程碑
    • 願景
    • 經營理念
    • 公司組織
  • 文章與消息更新
    回主選單
    • 最新消息
    • 觀點與文章
  • 提醒公告
    回主選單
    • 反詐騙提醒
    • 免責聲明
  • 聯絡大數據
  • 注意! 本公司不招收會員! 無Line群組與投資平台!
  • 加入會員
大數據投資股份有限公司
  • 首頁
  • 關於大數據
    企業簡介 公司淨值比較圖 里程碑 願景 經營理念 公司組織
  • 文章與消息更新
    最新消息 觀點與文章
  • 提醒公告
    反詐騙提醒 免責聲明
  • 聯絡大數據
  • 注意! 本公司不招收會員! 無Line群組與投資平台!
  • 加入會員
觀點分享
  • 文章總覽
  • 分類
  • 投資碎碎念 (9)
    • 大數據投資週報 (59)
      • 市場觀點 (32)
        • 體驗與心得 (27)
          • 書本閲後節錄摘選 (3)
            張忠謀自傳 (1)
            1. 首頁
            2. 文章與觀點
            3. 成長型與價值型財報數據相關性全解析

            成長型與價值型財報數據相關性全解析

            2025 Dec 19 體驗與心得
            內容目錄
            1. 一、研究動機:用數據回頭檢驗十多年投資經驗
            2. 二、資料結構:1908 檔股票 × 8 季 × 68 項財報參數
            3. 三、方法核心:監督式學習找出「真正有用」的參數
            4. 四、重要修正:剔除邏輯上必然相關的參數
            5. 五、回推驗證:用權重反選股票,看結果說話
            6. 六、下一步:正式拆分成長型與價值型核心參數
            7. 七、投資不是天賦比拚,而是資源配置的競賽
            8. 八、資料分享與風險聲明

            以下文章為個人研究與實作紀錄,目的在於分享一套「如何用數據驗證成長型與價值型投資邏輯」的方法論,而非提供任何投資建議。


            一、研究動機:用數據回頭檢驗十多年投資經驗

            在價值投資領域打滾十多年後,愈來愈清楚一件事:投資經驗很重要,但經驗必須被反覆驗證。

            近期我重新檢視自己長期奉行的價值型與成長型選股邏輯,決定嘗試用系統化數據與程式化方法,回頭拆分這些看似模糊的相關性的統計基礎。

            這也是為什麼,一直以來我投入大量時間撰寫程式,將過往難以人工處理的大量財報資料,轉化為可分析、可驗證的結構化數據。


            二、資料結構:1908 檔股票 × 8 季 × 68 項財報參數

            本次分析的資料範圍如下:

            • 樣本數:1908 檔上市櫃股票

            • 時間維度:近兩年,共 8 季

            • 財報參數:68 項(涵蓋獲利、成長、現金流、資本結構等)

            為了讓不同尺度、不同單位的數據能夠彼此比較,我先對所有參數進行標準化與重整,並統一轉換為單一數值,主要分為三種類型:

            1. 趨勢型指標:8 季數據的「斜率 ÷ 平均值」,用來衡量中期變化方向

            2. 穩定度指標:8 季「平均值 ÷ 標準差」,衡量波動程度

            3. 近期值指標:最近一季的單一數值

            最終,所有處理完成的數據被彙整為一張 CSV 檔,整個流程在程式完成後,產生數據時間不到 30 分鐘。


            三、方法核心:監督式學習找出「真正有用」的參數

            接下來的關鍵步驟,是利用 Python 中既有的機器學習模組,進行監督式學習(Supervised Learning)。

            目標很單純:

            在控制其他變數的情況下,找出哪些財報參數,對股價漲跌具有實質解釋力。

            模型訓練完成後,我可以取得每一個財報參數對「股價報酬」的相對權重,並進一步回推:

            • 這些權重是否呼應我們熟悉的成長型投資邏輯?

            • 是否存在被長期忽略、但實際上很關鍵的指標?

            這一步,本質上並不是為了「預測未來」,而是驗證既有投資模型的合理性。


            四、重要修正:剔除邏輯上必然相關的參數

            在初步結果中,我發現一個明顯問題。

            例如:

            • 本益比(Price / Earnings)

            • 殖利率(Dividend / Price)

            • 淨值比(Price / Book)

            這類直接包含股價(Price)**的指標,在回歸中與股價漲跌「高度相關」是必然結果,但這樣的相關性並不具備研究價值。

            因此,我刻意將這些在邏輯上已知會高度相關的參數剔除,重新訓練模型,只保留:

            • 權重顯著(權重 > 1)

            • 且通過皮爾森相關性檢定的參數

            這樣得到的結果,才比較接近「結構性特徵」,而非參數自我解釋。


            五、回推驗證:用權重反選股票,看結果說話

            在新的權重條件下,我將這些參數重新套回 1908 檔股票,計算綜合得分,並選出得分最高的前 20 名股票,再回頭檢視:

            • 這些股票在近兩年間的實際股價表現

            必須誠實說明:

            這個過程在時間上存在「已知結果再回看題目」的偏誤,因此並不嚴謹,也不符合純統計學的標準流程。

            但投資從來不是一門純科學,它只能應用科學,而無法完全科學化。

            即便如此,回推結果顯示,這組模型確實篩選出了具有明顯成長股特性的股票組合,而且使用的是「兩年八季的趨勢資料」,而非僅單一季度的短期數據。


            六、下一步:正式拆分成長型與價值型核心參數

            完成成長型分析後,下一階段我將專注於價值型股票,預計重點放在:

            1. 股利穩定度

            2. 營業現金流 / 資產的長期穩定性

            理論上,最終可以得到三組關鍵結論:

            • 成長型股票的核心財報參數

            • 價值型股票的核心財報參數

            • 同時適用於兩者的共通指標

            這將有助於更清楚地區分兩種投資策略在「價格容忍度」與「持有邏輯」上的本質差異。


            七、投資不是天賦比拚,而是資源配置的競賽

            市場待得愈久,愈能體會沒有什麼是「一定會贏」的。

            搶速度、拚靈感、拼消息,我自知並非強項;那就用程式補反應、用時間換勝率、用紀律對抗波動。

            正如巴菲特所說:

            「如果你已經在牌桌上玩了半小時,卻仍然不知道誰是待宰羔羊,那麼你就是那一個。」

            理解自己的優勢,並據此設計適合自己的投資戰場,才是長期存活的關鍵。


            八、資料分享與風險聲明

            本次分析所使用的權重結果,已整理於公開試算表中(含成長型篩選結果)。
            https://docs.google.com/spreadsheets/d/14iB5i4poYc9NKMMw1gdhmkTc9EeSa6FGQpa2F1lfQkg/edit?usp=sharing

            若有研究者希望進一步使用這些權重建構自己的模型,歡迎私下交流;即使直接取用,也無妨。

            唯一需要再次強調的是:

            本文僅為研究與方法分享,不構成任何投資建議,所有投資風險請自行評估並承擔。


            持續研究,持續修正,繼續前進。

              • 分享此文章
              0則留言

              相關文章

              大數據投資週報2025/05/16

              本週台股大盤強勢上攻928點,漲幅4.44%,指數成功站上21,800點關卡,周線連四紅,資金與人氣同步回籠。航運類指數飆漲12.8%,居家生活與其他電子產業分別勁揚11.5%、6.5%,構成漲幅前三產業亮點。資金由科技權值股擴散至傳產與內需,航運比重則提升至近兩成,成為盤面主攻部隊。 本週大盤不僅補回川普關稅風暴前的缺口,且在新台幣升值與國際利多推波助瀾下,出現全面回穩訊號。黃仁勳來台、COMPUTEX即將登場,AI題材再度升溫,輝達概念股齊漲。外資連11日買超,累計加碼逾2,100億元,台幣持續升值亦吸引外資匯入。在川普出訪與關稅暫緩題材加持下,市場避險情緒降溫,短線有望延續反彈格局。 回顧我們週報於五月初的提醒:「五月歷史報酬佳,建議可逢低布局」,目前正應驗中!

              • 2025 May 16

              12年實戰績效,證明我們用「讓分」打敗加權與櫃買! 無關理論,僅是「複利+紀律」

              • 2025 May 22

              大數據投資週報2025/05/09

              本週台股延續多頭氣勢,週線收連三紅,呈現穩中透強格局。在電子權值股撐盤與傳產族群接棒下,資金明顯回流市場。油電燃氣類指數大漲8.72%,食品類與造紙類亦分別上漲4.14%、3.76%,顯示避險型與民生相關產業在近期不確定性下獲資金青睞。 影響市場的國際變數方面,美英達成貿易協議,激勵美股全面上揚;非農就業數據優於預期與美國聯準會釋出穩定利率的訊號,亦強化資金風險偏好,推動全球股市回溫。台積電4月營收突破3,495億元創新高,加上新台幣升值,外資連續三週淨流入、單週買超達780億元,顯示熱錢進場信號明確。 惟短線仍須關注美中晶片關稅細節釋出等不確定性,操作建議保守中帶積極,選股不選市、配置勝過頻繁進出。

              • 2025 May 09

              大數據投資週報2025/03/21

              上週市場氣氛回暖,加權指數上漲1.1%,但類股輪動仍相當劇烈,資金流向值得關注。本週表現最佳的三大產業為 建材營造(+3.1%)、汽車(+2.2%)、運動休閒(+2.1%),其中建材營造受惠於國內外基建投資增加,推動股價上揚;汽車類股則因新能源電動車需求持續增長,加上供應鏈恢復,帶動市場買盤;運動休閒產業則因春季旅遊需求回溫,消費動能提升。

              • 2025 Mar 21

              大數據投資週報2025/02/08

              過去一週,資訊服務、生技醫療與數位雲端類股成為市場焦點,分別上漲14.5%、6%、4.8%,顯示市場資金正在向數位與醫療板塊轉移。然而,油電燃氣類股卻由春節前一周的強勢股轉為本週跌幅最深,半導體類股則在頸線位置盤整,市場觀望其突破動能。整體而言,大盤在新春開紅盤後表現疲弱,加權指數週跌0.2%,類股輪動劇烈。 展望2月,根據過去五年數據,台股普遍走弱,加權指數與櫃買指數分別平均下跌1.7%與1.5%。在此背景下,投資人應該如何調整策略?本期週報將深入解析產業趨勢,幫助投資人在震盪市場中尋找穩健布局的方向!

              • 2025 Feb 08

              大數據投資週報2025/06/20

              • 2025 Jun 20

              關於大數據

              • 企業簡介
              • 里程碑
              • 願景
              • 經營理念
              • 公司組織

              消息中心

              • 最新消息
              • 觀點分享
              • 活動花絮

              聯絡我們

              • Email: bigdatainvest01@gmail.com
              • 地址: 100 台北市中正區重慶南路一段57號
              • 公司名稱: 大數據投資股份有限公司
              • 統編: 24895838
              • 隱私權政策
              COPYRIGHT© 大數據投資股份有限公司 All rights reserved | Powered by 路老闆